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The ground-state energy of a system composed of an arbitrary number of nucleons coupled to a meson 
field is investigated. In the investigation, the nucleons are treated as an external source coupled to the meson 
field. Thus, only the mesons are treated as a quantum field and the ground-state energy is the energy of the 
zero-meson state. By using Fredholm determinants, the energy of the zero-meson state for the coupled 
source-field system is calculated relative to the energy of the zero-meson state for the noninteracting source-
field system. The ground-state energy of this system is used to define the two-nucleon potential. This poten
tial is calculated for two static nucleons coupled to a neutral scalar field and to a symmetric pseudoscalar 
field. In the case of the neutral scalar field, the well-known exact result is obtained. For the symmetric 
pseudoscalar field, the result is in good agreement with the potential studied by Gartenhaus. 

I. INTRODUCTION 

TH E approach presented in this paper for solution 
of the problem of internucleon forces was inspired 

by a calculation of Wentzel1 for the pair theory of 
nuclear forces. Schwinger2 has done a similar calculation 
for a Dirac field in the presence of an external Maxwell 
field. The solution of the problem of two static nucleons 
given in this paper is similar to one offered by Frank,3 

but it differs in the formal apparatus used and in the 
treatment of the vacuum meson field. 

We make use of Baker's analysis of the Fredholm 
determinant.4 Baker has applied the determinantal 
methods proposed by Schwinger2'5 to the pion-nucleon 
system and has used them to calculate the low-energy 
pion-nucleon scattering. 

At this point we must state what we mean by a two-
nucleon potential. This potential must be a function of 
the separation, spin, and isotopic spin variables of the 
nucleons that describes the interaction between the 
nucleons in such a way that we can use it for the poten
tial energy term in the Schrodinger equation. The result
ing Schrodinger equation must give the bound states and 
the low-energy scattering of the system. For this pur
pose, the potential must be independent of the meson-
field variables and must not be a function of the energy 
of the nucleons. I t should describe the interaction with 
sufficient accuracy to enable us to calculate the low-
energy scattering of the nucleons, as well as the bound 
state properties of the two-nucleon system. Since our 
potential will be suitable only for describing the low-
energy scattering data, the short-range part of the 
potential must be adjusted phenomenologically. This is 
usually done by inserting a strongly repulsive core. 

Such a potential has been calculated by several 
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authors, notably Brueckner and Watson6 and Henley 
and Ruderman.7 The method used by these authors in
cluded calculation of the field-theoretical scattering 
amplitude for two nucleons and substitution of this re
sult into the Lippmann-Schwinger relation. The latter is 
an integral relation between the scattering amplitude 
and the effective potential. Thus, the potential is defined 
as the kernel that gives the proper scattering amplitude 
for two nucleons. 

I t should be mentioned that Brueckner and Watson 
use a more elaborate method of calculation, which 
includes many effects that occur in higher orders. 
Despite the difference in the Brueckner-Watson and 
Henley-Ruderman techniques, their results more or less 
agree. Both use the results of the Foldy-Dyson trans
formation, which gives the low-energy pion-nucleon 
interaction used in their calculations. Brueckner and 
Watson argue that the pair term is suppressed, so the 
interaction finally used is that between static nucleons 
with a gradient coupling to the pion field. The calcula
tion includes only fourth-order terms; higher order 
terms are assumed to be of such short range that they 
lie well within the region of the phenomenological re
pulsive core. 

There are a number of objections to the foregoing 
method of calculation. One objection is the uniqueness 
of the solution of the Lippmann-Schwinger equation. 
Also, it certainly is not to be assumed that the scattering 
data should ultimately yield all the bound-state proper
ties of the two-nucleon system. In line with the unique
ness problem, there are ambiguities as to what types of 
Feynman graphs are to be included in the calculation.7 

Such a situation seems to call for a more precise de
finition of the potential and for an unambiguous pro
cedure for calculating it. 

As opposed to the foregoing method of calculating the 
two-nucleon potential, we define the energy of an 
external source coupled to the meson field. This energy 
is defined in such a manner that the source can be made 

6 K. A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023 
(1953). 

7 E . M. Henley and M. A. Ruderman, Phys. Rev. 92, 1036 
(1953); D. Feldman, ibid. 98, 1456 (1953). 
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up of any number of nucleons. I t turns out that this 
definition allows us to derive the two-nucleon potential 
in a completely unambiguous way. 

We find that the source-field energy is given by the 
two following additive terms: (1) the term due to shift in 
energy of the source because of the "dressing" effect of 
the mesons and (2) the term due to the shift in the 
vacuum energy of the meson field. The latter contribu
tion arises from the shift in the energy levels of single-
meson states when the meson field is coupled to the 
source; this term is the one studied by Wentzel1 and 
Schwinger.2 The term arising from dressing of the source 
is called AM, because it corresponds to the mass re-
normalization in the case where the source is a single 
nucleon. I t is AM that gives the major contribution to 
the potential for the pion-nucleon system. 

Although we do our calculation using a static source, 
care is taken to formulate the problem in such a way 
that recoil of the nucleons can be included. 

II. ENERGY OF THE SOURCE-FIELD SYSTEM 

The model that we concern ourselves with in the re
mainder of this paper is that of a meson field coupled to 
an external, classically prescribed source. Thus, there 
are no field equations of motion for the source. The 
possibility of a relativistic treatment of the nucleons is 
discarded from the start. However, we formulate the 
problem in such a way that the motion of the nucleons 
could be included, but without the possibility of the 
formation of nucleon pairs. In short, the nucleons may 
recoil, but the number of nucleons is strictly conserved. 
The Hamiltonian for such a system can be written in 
the form 

H=Ho~\-Hi, 
where 

# o = § E.k«k[at(ft)a(*)+a(fe)at(ft)]+Jlf^ (1) 
and 

ffi=Ek[F(*)fl(ft)+7t(fe)at(fe)]. (2) 

This Hamiltonian is similar to the one used by Wick8 

for the scattering of pions by static nucleons. The a(k) 
are the annihilation operators for the meson-field 
quanta, and they satisfy the commutation relations. 

[a(fc),at(fcO]=«kk', Za(k),a(k')l=0. (3) 

In the event that we wish to deal with pions specifically, 
k represents the set of variables (k,X), where k is the 
momentum vector and X is the isotopic spin index of the 
pion annihilated by a(k). V(k) is the source current that 
may contain the variables of any number of nucleons. 
We have assumed a linear coupling of the mesons to the 
source, so V(k) obeys the relations 

Ft(*)=[a(fe)>ffJ , [ « ( f t ) , 7 ( * ' ) > 0 . (4) 

The second part of Eq. (4) is a property of linear 
coupling, but it is not an essential part of our formalism. 

8 G. C. Wick, Rev. Mod. Phys. 27, 339 (1955). 

In Eq. (1), \p is a hypothetical field that represents 
the source and M is the energy of the noninteracting 
source. If the source happens to be n nucleons with the 
eigenvalues pi, p2, • • •, pn, then \p can be represented 
by a product of the Heisenberg operators, faipi), 
^2(^2), • • •, ^n(pn), for the individual nucleons in the 
source. In this case, M is given by E(pi)-\-E(p2)-\ 
+E(pn), the sum of the individual nucleon energies. 

The only quanta created or annihilated in the proc
esses described by our Hamiltonian are the quanta of the 
meson field. The ground state of our system is con
sidered to be the state with the source, but with no 
meson quanta present. For convenience, we refer to this 
state hereafter as the zero-meson state. 

For Ho of Eq. (1), representing the noninteracting 
source and field, the ground-state energy is given by 

£o. = i £ k « i r H l f . (5) 

Eog is clearly infinite. The ground-state energy for the 
interacting system, which we call Eg, diverges in the 
same way. We might, however, expect the difference 
Eg—Eog to be convergent if defined properly. I t is this 
difference 

Ev = Eg Eog 
that we study. 

In order to calculate the ground-state energy of the 
perturbed system, we assume that the Hamiltonian has 
been diagonalized and expressed in terms of a set of 
normal-coordinate field variables 

+ (M+AM)W. (6) 

The A(k) are the meson-field normal coordinates and 
satisfy the same commutation relations as the a(k): 

lA{k)^{k')-]=hw, tA(k),A(k>)-] = 0. (7) 

If we now assume the existence of a vacuum state | ^0) 
such that 

i4(fc)|*o>=*|*o> = 0, 

then the A^(k) generate eigenstates of the interacting 
system and can be said to create "physical" mesons. 
Similarly, the ^ operator can be thought of as creating 
the "clothed" source. 

Assume that the coupling between the nucleons and 
the meson field is "turned on." The effect of the coupling 
is to shift all the energy levels away from their un
perturbed values. AM is the energy shift of the source 
due to the dressing effect of the virtual meson cloud that 
appears when the coupling is turned on. Similarly, the 
fik are the shifted single-meson energies of the field. 

Examples of the A (k) operators are easily found. The 
a'm(k) operators that arise in the problem of meson 
scattering are such operators. They annihilate physical 
mesons interacting with the source and create the eigen
states of the total Hamiltonian. I t can also be shown 
that the Hamiltonian expressed in terms of the ain(k) 
operators is exactly of the form of Eq. (6). The normal 
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field coordinates are by no means unique and may vary 
according to the boundary conditions on the problem. 
The ain(£) demonstrate that such normal coordinates 
exist, which is sufficient. 

The ground-state energy of H is 

E , = £ E k O k + A r + A M (8) 
and 

£ p = i E k ( O k - « k ) + A M . (9) 

We have grouped the terms in Eq. (9) in such a way 
that we need only the sum over all the energy shifts of 
the mesons, plus the "renormalization term" for the 
source. We can now evaluate Ev by determining the 
"renormalization energy" for the source and the energy 
shifts for all the single-meson states. We use the sym
metrized form for the Hamiltonian in Eqs. (1) and (6) 
in order to derive Eq. (9). 

In the remainder of this discussion we shift the refer
ence energy of the Hamiltonian by a constant and use 
the following Hamiltonian: 

Ho' Lkcokat (£)<*(£), (10) 

H^ZkLVWaW+VKkWm-AM. (11) 

Here the zero-meson state has zero energy, and the one-
meson eigenvalues for H and Ho are Ok and o>k, respec
tively. The variables for the source will be carried in the 
state vector. 

Equation (10) is the normal product form of H0, and 
it is the form most commonly used in literature dealing 
with low-energy meson physics. The normal product 
form of any of the dynamical variables has the property 
that the vacuum expectation value of the dynamical 
variables vanishes. The vacuum expectation value of the 
energy is just what we wish to calculate, so the normal 
product form, which subtracts off the vacuum energy, 
is not the appropriate energy operator for the derivation 
of Eq. (9). Once Eq. (9) is established, we can use Eqs. 
(10) and (11) to calculate 12k and a?k, which are now the 
energy eigenvalues of the single-meson states in the 
interacting and noninteracting systems, respectively. 

A more general proof that the energy shift of the 
vacuum state of the meson field is \ Ek(^k—^k) is given 
by Schwinger2 in his treatment of the vacuum energy of 
fermions coupled to an external source. 

III. THE FREDHOLM DETERMINANT 

This section outlines the properties of the infinite 
determinants that are useful in calculating Ev. The 
material is based largely on the work of Baker,3 and the 
reader is referred to his paper for a more complete 
discussion. 

Formal Properties 

D(E) is defined by 
/E-Ef\ 

£>(£) = detf ) . (12) 
\E-HJ 

If the eigenvalues of Hf and H$ are represented by E^ 
and Eok, respectively, D{E) can be written as 

u/E-Ek\ 
D(E) = U[ ) . (13) 

* \E-EJ 
If the system under consideration possesses certain sym
metries, most of the eigenvalues present in Eq. (13) are 
degenerate. For example, the eigenstates of the various 
constants of the motion, such as linear and angular 
momentum are, in general, degenerate. In a field theory, 
there may be two states whose particle numbers differ 
but whose other eigenvalues, including their energy 
eigenvalues, are the same. For example, suppose we have 
a meson field with mass m. Above the threshold energy 
for two mesons, E>2my we may have states with either 
one or two mesons present and with the same eigen
values for the other principal constants of the motion. 

We denote by y the eigenvalues of a set of observables 
that, together with the energy, are sufficient to form a 
complete set of observables for the system. An impor
tant observable present in the set is the physical, or 
"asymptotic," particle number. If we restrict ourselves 
to a collection of n asymptotically incoming or outgoing 
particles, we then say we are dealing with the subset 
yn only. 

By a proper arrangement of the factors in Eq. (13), 
we can separate out the degeneracies from D(E) and 
write 

r /E-E7k\~] 
D(E) = IL n \ = ILDy(E). (14) 

7 L * \E-EoyJJ y 

In the D7n(E)y each eigenvalue Eoyk appears only once, 
if at all. 

The hermiticity of Hr and H0
f implies that all the 

zeros and poles of D7{E) lie along the real axis. For 
D7n (E) there is a continuous distribution of simple poles 
starting at nm along the positive real axis. 

From Eq. (13) we conclude that D7(E) is analytic in 
the E plane, which is cut along the real axis. Writing 
D{E) in the form 

D(E) = det(l HA (15) 
V E-Ho' / 

indicates that each D7{E) —> 1 as |E|—> 00. 
Because there is no more than one factor of 

(E—Eoyk)'1 in each of the D7n(E), we have the repre
sentation of 

00 / r7nk \ 
Dyn(E) = l+ £ ) , (16) 

where r7nk are the residues of the simple poles of the 
D7n(E). I t turns out that, for our purposes, the sub-
determinant referring to the one-meson states is of 
primary interest. For the sake of simplifying a compli
cated notation, we suppress the index y in the rest of 

file:///e-hJ
file:///e-eJ
file:///E-EoyJJ
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this section. Accordingly, we may factor D(E) into D(E) upon (E—Eok)~
l. TO this end, we define 

D(E) = Dl(E)D2(E) = (l+ i - ^ W ) . (17) ^ » ( ^ = - ^ — ( l - | E o * > < ^ | ) , (18) 

where | E0k) is an eigenstate of HJ with eigenvalue Eok. 
Di(E) is the subdeterminant of D(E) referring to one- In the following equation, we make use of the property 
meson states, and D2(E) involves at least two mesons, that the determinant of the product of operators is the 

Now, we wish to exhibit explicitly the dependence of product of the determinants 

D(E) = d e t [ l - G 0 ^ ( £ ) # i ' - (E-Eojc)'1 \Eok)(Eok| # i ' ] 

f | Eok)(Eok\ H i T l - G o ^ * ^ ) ^ i ' ] - 1 ; 
= d e t [ l - G o ^ ( £ ) # i / ] det 1 - - } . (19) 

I E—Eok 

Performing the Fredholm expansion of the second factor in Eq. (19), we find 

( | E0k)(EQk | # x ' [ l - GrE™ (E)ff i T 1 ] (Eok | S 7 [ l - GrE«k (E)HV]"11 E0k) 
det 1 = 1 1 

-rLsEoi-'EQn 

n\ 

E—Eok J E—EM 

<£OI I Eok)(Eok | # i ' [ l - G0**» (E)ff i']-11EQ1) (E01 \ Eok)(Eok | # i ' [ l - G0**» (E)tfi']-' I E0n) 

E—EQk E—Eok 

(Eon | E0k)(Eok | ffi'[l - Go*** (E) ff I'J"11 £oi> <£o. | £o*)<-Eo* I # i ' [ l - G0^»* (#)ff i']"11 £o»> 

E—Eok E—Eok 

(20) 

In Eq. (20), all terms except the first two vanish because all the minors have all their rows identical. We make use 
of the property that a determinant, with any pair of identical rows, vanishes. Thus, 

f |E0*><Eoib|ffi,Cl-Go^*(^)ffi,]~1} (EofclffiT'l-Go^^EJHi']-1! (E)0*> 
det 1 [ = 1 (21) 

I E—EQk J E—Eok 
and 

( (£ 0 , | J H r
1 Tl -Go^K^)^ i / ] - 1 l ^> l 

#(£)= 1-- - — - \D*S"(E), (22) 
I E-EQk J 

where 
J9^o*(E)sdetCl-Go^0*(£)Sl ,]. (23) 

In Eqs. (17) and (22), we have two equations showing explicitly the behavior of D(E) about any pole E^<2m. 
We use these relations to calculate the residues rxk of D\(E). To begin with, we expand the residue in Eq. (22) 
about Eok and, comparing it with Eq. (17), 

( <£0* | Hi'[l ~ G o ^ O E o ^ i ' ] - 1 1 En) 
D(E) | *->*OJb=Z^*o*(E0*) 1 

I E—EQJC 

-(i/<*E)<Eo*|ffi!^ (24) 

Letting 

Z2= {l ( E o . l ^ i T l - G o ^ , ^ ) ^ / ] - ! ! ^ ) ! ^ ^ 1 , 

neglecting everything of order E—E0k in Eq. (24), and combining the result with Eq. (17), we get 

nv \ ((^|firiTl-G0^H^)firi,]-1l^)] 
(1+ Z UM )̂ I I ^ I ^ ^ M ^ O J O ^ + Z ^ * 
\ EQk' E—JEOA' / I £-£o. 
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Equating like powers of E—Eok yields the two relations 

D2(E0k)rlk=-D^(EQk) 

X (E0k | F i l l - G o ^ M ^ o / c ^ i T 1 1 E0k) (25) 

and 

D^k(Eok)Z2~
1=D2(E)D1^k(Eok) m (26) 

Finally, we get 

rik=-Z2Di**°>(Eok) 

(E0k | F i l l - Go**0* (Eo*)^] - 1 1 Eok) (27) 

as the expression for the residues of the subdeter-
minant D±(E). 

In order to arrive at Eq. (27), we found it necessary 
to restrict Eok to the range Eok<2m, where D2(E) has 
no poles. Nevertheless, Eq. (27) is still valid in the 
region E> 2m if we replace | Eok) by [ E0kyi). This can 
be seen by the fact that the whole derivation goes 
through if we divide Eq. (22) and D2{E) by the factor 

( <£o*Y 1 # i l l - Go^°* ( £ ) # ! ' ] - ! I E0ky) 1 
n i . (28) 

T^YII E—Eok J 

\Eoky) ranges over all the eigenstates of Ho that are 
degenerate with the single-meson state in the region 
2m<E<3m. Thus, the modified equations have simple 
poles at E=Eok. This procedure can be repeated for all 
regions nm<Eok<(n+l)m. For more detail on this 
point see Ref. 4. 

Construction of the Eigenstates of Hf 

If we write Eq. (13) in the form 

AEk 

D(E) = U 1 
* \ E-Eok 

(29) 

where AEk is the shift in energy of the state | Eok) when 
the coupling between the meson field and the source is 
turned on, and compare this with Eq. (22), the 
identification 

AEk=Ek-EQk 

= (Eu\n1'll-G**"(E>)Bi'J-1\Eul) (30) 

can be made by noticing that D(Ek) = 0. Furthermore, 
if \\pk) is an eigenstate of the total Hamiltonian with 
eigenvalue Ek, and if it is normalized in such a way 
tha t<£o* |^*)=l , 

£ » - £ « = <£«|ff ' -£To' |**>=<£«|ff i ' |*»>. (31) 

This suggests 

| f„) = [1 - G^*>*(£*)ff i']"11 E0k). (32) 

In fact, 

H0\E0k) 

-•Hi 1 — 

= Ho-

Ek-H0' 

£t - f fo ' - f l i ' 

Ek-H0 

AEk 

fk)+E0k—• £o*), 
Ek-H0' 

and, consequently, 

HaiEi-HoT'iEt-Ho'-H!') \fk) 

AEk 1 
1 — 

so that 
Ek—Eok 

(Ek-H')\tk)=0, 

E0k\Eok) = 0, (33) 

(34) 

and, thereby, Eq. (32) is verified. 
With regard to Eqs. (32) and (34), it is interesting 

to note that \\j/k) is that eigenstate of the total Hamil
tonian that goes over into the eigenstate | Eok) of HQ\ 
as the interaction between the nucleons and meson field 
is removed. Usually, one can construct the eigenstates 
of Hr with the eigenvalue Eok, and relate it to the state 
| Eok). However, such a state does not properly account 
for the shift in energy of the meson states as the coupling 
is turned on. From the derivation of Eq. (34), it is clear 
that the eigenvalue Ek is equal to Eofc+AZ^, and that 
we obtain this energy shift by using the propagator 
Go*Eok(E), rather than (E-H0

f)~l. 
We turn now to the problem of normalizing the states. 

The normalization is found from 

^(EoklLl-Bt'G^iEk)!-1 

X [ l - G o ^ * ( ^ * ) ^ i , ] - 1 l ^ o i b ) 
= (E0k\ l+ll-H1V0^

EHEk)']-1H1
,Go^EHEk)

2Hif 

X [ l - G o « « ( ^ ) ^ i , ] - 1 l ^ o * > , (35) 
or 

N=zrx 

= i-(^/^)(E0fc |^iTi-Go^K^)^i ,]-1l^)U=^ 
(36) 

is the so-called state-vector-renormalization constant 
for the physical states. If one examines the Feynman 
diagrams that contribute to Z2 in the expansion of 
Eq. (36), taking into account the special propertiesBof 
Go^Eok(E), it is clear that Z2 is the same no matter how 
many mesons are present in the state |Eo*). I t is 
appropriate, therefore, to call Z2 the renormalization of 
the source or the physical zero-meson state. Physically, 
Z2 represents the probability of finding the bare source 
in the physical source state. Z2 varies with the number 
of nucleons in the source. For example, If Z2

(1) is the 
state vector normalization constant for a source of one 
nucleon, it differs from the renormalization constant for 
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two nucleons Z2
(2). They are related by the condition 

that 
Z2<2>->(Z2

(1))2, 

as the separation of the two nucleons becomes infinite. 
Finally, we examine the question of the energy shift 

due to the dressing of the source. In the case of one 
nucleon, this is just the mass renormalization. Assuming 
that we have adjusted the ground-state energy of Ho so 
that it is zero, (i.e., let Ho—>Ho), we wish to do the 
same for the ground-state energy of H. From Eq. (30), 
we see that the energy shift of the zero-meson state is 

AE 0=<0|#i |*o>, (37) 

where 10) and | ̂ o) are the noninteracting and physical 
states, respectively. By subtracting the c number, AEo, 
from Hh we achieve the renormalization of the source 
energy. 

Hereafter, in analogy with the problem of mass re
normalization, we refer to AEo as AM", and replace Hi 
by Hi-AM: 

(0\Hl'\xf/0)=(0\Hi~AM\to) = 0. (38) 

Equation (38) now defines AM. Thus, by adopting the 
Hamiltonian of Eq. (11), we have removed, from D(E), 
the pole at the origin. 

Relationship of the Energy Shifts 
to the Observables 

The results of this subsection are based primarily on 
physical arguments so that we may quickly develop 
some relationships important for the application of the 
properties of D(E). These relationships are of funda
mental importance and are derived in a more formal 
fashion in the literature.4,9 

For the sake of simplicity, we can say that the aim of 
quantum mechanics is to calculate energy levels (or 
energy differences) and transition rates. Hence, we 
must show how the D(E) is related to these quantities. 
We have already shown that the residues of the sub-
determinants are related to the energy shifts, Eq. (27), 
so we will say no more about this matter. For the rest of 
the problem, it is perhaps simplest to establish the con
nection between the energy shifts and the phase shifts 
in a scattering problem, and thereby define the 5 matrix. 

Let us consider the situation where we have perturbed 
and unperturbed waves, of type y, in a spherical box. 
The relationship between the energy-level spacing dE 
and the energy shifts are shown in Fig. 1. The Eoi repre
sent the unperturbed spectrum of the quasicontinuum, 
which ranges from m to infinity, while the Ei represent 
the corresponding perturbed spectrum. The manner in 
which the energy levels are shifted when the system is 
perturbed is illustrated by the AE*. I t is important to 
realize that the AEi need not have the same value as 
one of the AEo* In other words, as long as we are dealing 

9B. S. DeWitt, Phys. Rev. 103, 1565 (1956). 

hAE5*j 

0 m E 0 2 E 0 3 E 0 4 E 0 5 

| — - d E — * - | 

FIG. 1. Relationship between dE and A7i&. 

with waves in a box, the spectra of the perturbed and 
unperturbed waves are entirely different, as indicated 
in Fig. 1. 

The phases of the perturbed and unperturbed waves 
at large distances, r, from the center of the box are 
&7

(w)E+<£7, and &o<y(n)+<£o7, respectively. We apply an 
arbitrary boundary condition on the phases at the 
surface of the box 

Vn)^+tf 7= W^R+W=nw+fi, (39) 
where the superscript n refers to a particular natural 
mode of the box. From Eq. (39), it follows that 

dn= (R/w)dk (40) 

and that the phase shifts are given by 

57=0T-0o7=^(AOT(»)_ife7(»»)). (41) 

Now, if we write the energy shift in the form 

dE dE/8y\ 
AEy* = — ( V » > - V n ) ) = ( ~ ) , (42) 

dk0 dk \R / 
and make use of Eq. (40), we have 

AEyk=-(dy/w)dE. (43) 

Equation (43) not only gives the general connection 
between the energy shifts and the phase shifts but also 
shows the difference between the energy shifts and the 
energy-level spacing. Only when the energy-level spac
ing approaches zero as the radius of the box gets 
infinitely large, does the relation 

AE7k = dE=0 

hold. This relation is not true, of course, if we are dealing 
with a bound state. 

IV. CALCULATION OF Ev 

In this section we apply the properties of D(E) to the 
calculation of Ev. 

Vacuum Energy of the Meson Field 

In order to calculate Ev, we need a way to sum all the 
energy shifts of the one-meson states. In order to ac
complish this, let us consider a function / ( E ) , regular in 
the E plane. For such a function we can write the follow
ing relationship: 

£ [/(«*)-/(«*)] = — f dEf(E)(- — ) , 
k 2-KI J c \E—Qk E—o)k/ 

(44) 
where C is the contour shown in Fig. 2. 
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and 

_ ReDyl(E+ie) = ilDyl(E+ie)+Dyl(E-ic)'] 

ry^Uk) 
l+PY, = Dy*»*(E). (52b) 

FIG. 2. The countour used in Eq. (44). 

The function D±(E) can be expressed by 

A(22) = I l ( - — 
k \E—COk 

(45) 

where k is the label for a complete set of observables and 
ranges only over single-meson states. We can relate 
Eq. (44) to Di(E) in the following way: 

dDi(E) 

«fc E—o)/c 

Using Eq. (49) in Eq. (48), we find 

1 r™ Dy^E+ie) 
i E ( 0 * - c o * ) = — £ / dE\n , 

k 4:iri 7i J m Dy^E—ie) 

1 r00 ImDyi(E+ie) 
= — £ / dE arctan—• ; (53) 

2TT TI J m ReDy^E+ie) 

and from Eqs. (52a,b) and (27), we find 

I m D 7 l ( £ + ^ ) ry1(E) 

dE 
-D1(E)Z( ) 

h \E—Q,k E—aJ 
or 

d / 1 1 \ 
— lnDi(£) = E ( ) • (46) 
dE h \E-tik E-o)k/ 

Equation (44) can now be written as 

X C/ (0*) - / («*) ] = — f dE/(E)— lnD!(E). (47) 
* 2wi J c dE 

Letting f(E) = E, and integrating Eq. (47) by parts, 
yields 

ReD7l(E+ie) Dy*E(E) 

= TZ2(E7I I HSll - GfE (£)ffi'J"11 £71). (54) 

Equation (54) finally allows us to write 

hH(ttk—o>k) 
2TT Tl Jm 

dE 

E ( 0 * — C0yfc)= ; / 

27T^ J c 
dE\nDi(E) 

1 

27T^ rf Jm 

2?i(£+fe) 
dE In . (48) 

Di(E-ie) 

We now factorize D\{E) into sub determinants relat
ing to different eigenvalues for single-meson states of a 
complete set of observables k, where k is the set (0^,71), 
C0& is the energy, and 71 represents the eigenvalues of the 
complete set excluding the energy: 

D1(E)=UD7l(E), 

and 

Z ) r l ( £ ) = l + E 
ry^oik) 

(49) 

(50) 

XarctanTZ,<fiyi |ffi ' [ l-G0 ' i J ' (f i)Hi ']-1 | -B7i>, (55) 

comparing Eq. (53) with Eq. (43), as follows: 

i £ ( 0 * - « * ) = E / dE5yi(E), (56) 

* • 2 x T l J O T 

so that we are led to the relation 

(1/TT) tan871(£) 

= -Zi(Ey1\H1'll-G0^(E)H1'^\Ey1). (57) 
This last result is in agreement with a well-known ex
pression used for calculating phase shifts.4 

The Fourth-Order Potential 

If we collect the results of Eqs. (9) and (55), we get 
the following relation: 

E—uic 

I t is clear that D7l(E) has simple poles and that 

Dyi(E*) = Dyi(E)*, (51) 

which allows us to write, 

1 
ImD 7 l (E+ie) = — [_Dyl (E+ie) - Dyx (E-ie)~] 

2i 
= —ir X) ry1(o)k)d(E—o)k), (52a) 

1 
EV = AM+— E 

2TT VI 
dE 

X^ct3inirZ2(Ey1\H1
fll-Go^(E)H1

fJ-'\E7l). (58) 

Considering the case of a meson field coupled to two 
static sources that have a separation x, we find that Ev 

is a function of the separation. The potential is 

U(x) = Ev(x)-Ev(oo), 

and our problem now becomes one of evaluating U(x) to 
fourth order in the coupling constant. 

file:///E-tik
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(a) 

v 1 — " l 1 

(b) 

FIG. 3. Diagrams contributing to AM, up to fourth order. 

where AM(2) is the second-order mass term. 
In order to proceed further with the calculation of EV} 

we must specify exactly the number of nucleons present 
in the source. In case we are dealing with two nucleons, 
V(k) will be of the form 

V(k)=V(k)V+V(k)W, (62) 

where Va) and F(2) contain the variables of the first and 
second nucleons, respectively. 

Neutral Scalar Field 

The properties of the neutral scalar field coupled to a 
static source are well known.10 The two-nucleon poten
tial, in this case, can be found exactly, and we will use 
this result as a check against the present method. One 
important property of the neutral scalar field is that 
there is no scattering from a static source (the phase 
shifts are zero). Thus, according to Eq. (58), the only 
nonvanishing terms are those belonging to AM. Ex-

10 G. Wentzel, Quantum Theory of Fields (Interscience Pub
lishers, Inc., New York, 1949). 

Now, AM is obtained from Eq. (38) by expanding 

(0\(H1-AM)[i-Go*°(0)(H1-AM)']-1\0) = 0 

to fourth order in Hi and using the property that 

Go*»(£)l«*> = 0. (59) 

If, in addition, we have a source coupled linearly to the 
meson field, only those terms containing even powers of 
Hi are retained. In this case, the fourth-order expansion 
of AM is 

panding the denominator of Eq. (60), retaining terms up 
Vf to fourth order, and using the property that the V(k) 
it commute with each other, 
S' Ev=-j:qV(q)VKq)/c»q. (63) 

}\ In addition, the source current for a source consisting 
of two nucleons is 

d 
V(q) = ^Tr)lim{f/m)lv(k)/(2^)^~\ 

X(eik'xl+eik'X2), (64) 

where N= (quantization volume)~1/2, / is the rational-
a ized coupling constant, m the mass of the field quanta, 
i- v(k) is the cutoff function for the nucleons, and Xi and x2 
;e are the positions of nucleons one and two, respectively. 
ie Letting Xi=— x2, and substituting Eq. (64) into 
it Eq. (63), 

* 1 / A 2 C K?)l2 

y Ev= ( - ) /d8gL-i-L(i+cos2k.x). (65) 
s_ 2T2\m/ J cog2 

b_ Equation (65) gives us the energy of the zero-meson 
state as a function of 2x, the separation of the nucleons. 

A 1 / / V V^^(9) , ̂  rV(p)V(q)VHp)V^(q) V(q)V(p)VHq)VKq)l\ // , ̂  V(q)V*(q)\ 
AM= ( I + £ + 1 / ( 1 + E ) • (60) 

V Q 0)q pqL CCp(0)p-i-0)q)0)q 0>q(o>p-\-0)q)o)q J/ ' \ Q 0)q
2 / 

Equation (60) includes just the diagrams shown in Fig. 3(a). The horizontal double line represents the collection 
of nucleons constituting the source and should not be construed as necessarily representing a single nucleon. Per
haps a few words are in order regarding the fact that, in the two-nucleon case, diagrams corresponding to the fourth-
order terms of Fig. 3 (b) occur, whereas, for a single nucleon, no such modifications to the single-nucleon line occur 
in fourth order. The answer is found in the denominator, which is changed in such a way that it exactly compensates 
for the terms corresponding to the diagrams in question. Realization of this fact allows one to verify, by use of 
Eq. (60), that AM for two nucleons infinitely separated is equal to twice AM as calculated for a single nucleon. 

It remains for us to evaluate the phase-shift terms up to fourth order using Eq. (57). The result is 

f V(k)AM^V(k) rV^(k)V(q)VHq)V(k) V(q)V^(k)VHq)V(k) 
tan57(cofc) = 7r 2 • £ 

I Oik2 Q L 0)k2(o)k — 0)q) GJkO}q(00k — O)q) 

V*(k)V(q)V(k)V*(q) V(q)V* (k)V (k)V* (q) V (k)V(q)V* (q)V* (k) V (q)V (k)V* (q)V* (k) 

0)kO)q(Q)k — OJq) O0q
2(a>k-{-O)q) 0)k

2(0)k + 0)q) VqUkfak + Uq) 

V(k)V(q)VHk)VHq) V(q)V(k)V*(k)V*(q)-nr V(q)VH 
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FIG. 4. Representative processes occurring in Eq. (71). 

For infinite separation we have 

i / A 2 r \<q)\2 

£ » ( - ) = - — ( - ) / ^ i - ^ , (66) 

which must be interpreted as twice the renormalization 
energy of a nucleon, i.e., the sum of the self-energies of 
two noninteracting sources. The potential energy of two 
nucleons is defined so that it is zero when the nucleons 
have an infinite separation. We call U(2x) the potential 
energy, so that 

i / A 2 r \<q)\2 

U(2X) = EV(2X)-EV(K) = — ( - ) Iffiq - . (67) 
2TT2 W J co,2 

This is the well-known expression for the potential 
energy of two static nucleons coupled to the neutral 
scalar field. 

V. CHARGED PSEUDOSCALAR FIELD 

Proceeding along the lines that led to Eq. (67), we 

use 

V{k\)={^yiHN-
f v(k) 

m (2co*)1/2 

X(^x (1)<r(1)-k^k-x+TX
(2)a(2>-ke ik-x) (68) 

as the source current for two static nucleons coupled to 
the charged pseudoscalar field. The a ( i ) and T W are the 
spin and isotopic spin indices, respectively, and the 
superscripts refer to the different nucleons. 

The second-order term for AM is easily calculated: 

1 / A 2 f W< 
AM<2> = ( - ) d*q— 

2fK2\m) J co 

v(q)\< 

X ^ + a ^ - q a ^ . q - c ^ - T ^ cos2q.x). (69) 

The ^-dependent term is the second-order potential 
derived from ordinary perturbation theory. Carrying 
out the calculation for the fourth-order terms in AM, 
we find second- and fourth-order modifications of each 
nucleon line, one-meson exchange with modified vertex 
and nucleon line, and two-meson exchange. These 
processes are illustrated in Fig. 4. The evaluation of the 
fourth-order terms produces 

i / A 2 f lf(<?)l2 

AM=-\—[ —) \d\ (3^ 2+i:^ .T^(r^.q<7W.qcos2q-x) 
{2Tr2\m 

+ 4 T A ? 
d\$p-

v(q)\2\v(p)\ 

COe
3COp3 

( 3 ^ ¥ + ^ ( 1 ) ^ ( 2 ) ^ ( 1 ) - ^ ( 2 ) - < l c o s 2 q - x ) ( 3 c o p + | c o g ) 

+ 
b2q2 4cop

2 

— 9co0—4co, 
COp2COg

2\C02) + COe 

3ccv 

l-(L dlq<Pp-
v(q)\2\v(p)\* 

X 
l_ \W„-hO> +o 

+2^ 

/ J 4 T T 4 W 

i ) ^ ( 2 ) U i ) . p X q a ( 2 ) . p X q + ( p - q ) 2 ^ 3 4 

x ( i + 

COp2COg3 

COp + COg 

:)] cos2(p+q)«x 

IJI 
2TT2\ 

2 r \v(q)\
2 r1 

<Pq ( 3 c 7 2 + ^ ( 1 ) - c ( 2 ) o - ( 1 ) - q ( r ( 2 ) - q c o s 2 q . x ) . (70) 
m co0 

This expression for AM can be greatly simplified by following the renormalization procedure outlined by Chew11 

for our pseudovector coupling model. We notice that the denominator is just Z2
(2) , as we have defined it for the two-

nucleon source, evaluated to second order in / . The ^-dependent part of Z2
(2) can be shown to be quite negligible 

as compared with the x-independent terms, at least in the region outside the repulsive core, say, 2#>0.5 m - 1 ) . 
In any case, the renormalized coupling constant is defined by 

fT = ( Z . W / Z ^ " ) / . (71) 

Recalling that the x-independent part of Z2
(2) is just (Z2

(1))2, and noticing that the second term of AM supplies the 
vertex modifications required for (Zi(1))2, we can replace f2 appearing in Eq. (70) by / r

2 . To second order in the 

11 G. F. Chew, Phys. Rev. 94, 1748 (1954). 
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coupling constant, fr
2 is given by 

j'^b-Ui d*k 
k*\v(k)\*-\ 

01k3 

(72) 

From the way we defined the zero-meson state, it is understandable that our renormalized coupling constant 
should depend upon the separation of the two nucleons. It is also reassuring that fr, in the limit of large x, should 
be very nearly equal to the renormalized coupling constant obtained for meson-nucleon scattering. The remainder 
of the second terms in Eq. (70) represents the propagator modification for the second-order term. The effect of such 
modifications has been estimated by Brueckner and Watson6 to be small and, accordingly, we neglect it. 

The contribution of AM to the two-nucleon potential is found to be 

1 / A 2 f ltf0 
2Tz\m/ J o) 

v(q)V' 
. a ) . , ( 2 ) < r u) . q f f (2 ) . q c o s 2 q . x 

.iJt 
4TT4W 

d3pd3q-
v(q)\2\v(p)\ 

co/cop2 

" / 3a>p \ 
( r^W-^oo )(T^.pXqcT(2)-pXq 

ACOp + COg / 

) cos2(p+q).x, (73) 

which is just the potential studied by Gartenhaus.12 

To Eq. (73), we must add the effect of the shift of the 
energy of the pion field using Eqs. (55) and (61). Cal
culation of this term is exceedingly difficult, but we can 
estimate the general effect without too much labor. If 
we denote the contribution to the potential of these 
terms, by AU(2x), we have 

AU(2x) = - d*k 
2TT 

r £2(*)Efl(aO-z2(oo)2:ff(oo) -l /H N 
Xarctanx , (74) 

L l+7r 2 Z 2 (x )Z 2 ( ^ )E ,WE, (^ ) J 
where Eg0*0 represents the ^-dependent part of Eq. 
(61). A simple calculation shows us that E Q ( ° ° ) *S a^" 
ways several orders of magnitude greater than the 
^-dependent terms in the region outside the repulsive 
core (2#>0.5 m-1). This occurs primarily because the 
sum over q brings in terms proportional to e~2mx and 
e-2ax^ w h e r e a is the cutoff momentum. Thus, the con
tribution of Eq. (74) is quite negligible compared with 
Eq. (73). 

VI. CONCLUSION 

We have used the formalism of Fredholm deter
minants to calculate the two-nucleon potential. The 
resulting expression is very similar to the Gartenhaus 
potential. The main difference is that the potential is 
developed as the ratio of two power series in the 

12 S. Gartenhaus, Phys. Rev. 100, 900 (1955). 

coupling constant, unlike the perturbation expansion. 
This results in the renormalized coupling constant hav
ing a small dependence of x. 

One formal advantage shows itself in the use of the 
propagator G(f*Eo(E), which leads to the exclusion of 
the troublesome "ladder" diagrams. The inclusion of 
such terms seems to be necessary when using a formalism 
based on the Lippmann-Schwinger equation, as well as 
in a Tamm-Dancoff treatment of the two-nucleon 
system, as was pointed out by Feldman.7 Indeed, 
Henley and Ruderman found that they were necessary 
in the neutral scalar theory for removal of the fourth-
order terms. We have found that the "ladder" terms 
may be excluded, and that the correct expression for the 
potential in neutral scalar theory also may be obtained 
by using the formalism of determinants. 

The fact that the procedure developed in this paper is 
a well-defined procedure for calculating the energy of a 
source composed by arbitrary numbers of nucleons 
should make it suitable for study of the triton or He3. 
Wentzel applied the method of determinants to the 
study of the energy of a proton lattice interacting 
through the pair theory.1 A similar study for a source 
composed of many nucleons could yield information 
regarding the size of the two-body interaction relative 
to the many-body interactions. 
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